MIHICTEPCTBO OCBITHU 1 HAYKH YKPATHU
Hanionanbauii yHiBepcuTeT « KneBo-MoOrmisiHcbKa akajaeMisn»

DakyJbTeT iHPOPMATHKH

JlaGopaTopna po6ora Ne 4
3 Ilpouexypnoro nporpamyBanns (Ha 6a3i Ci/Ci++)

Dyuxuii o6uucaenns n-20 yucaa Diovonauul.

Ilpozpamyeanns, 00ciidrcenns ma ROPIGHANHHA

CrynenTtku 2 Kypcey, rpynu 1,

cnenianbHOCTl 121 «IHX)eHepiss nporpaMHOro 3a0e3neueHH D

AcramenkoBoi Karepunu OnexcanapiBHU

Buxknanau:

nou. B. B. by6nuk

M. KuiB
2025

3MmicT

1. TlopiBHSHHS peami3ariil MIHECEHHS O CTETICHSeerveeruiereierirerreereenieenieeseeeneens 3
2. JloBenaeHHS BEKTOPHO-MATPHUUHOTO YABIICHHS ... veerurreeereeereennreennreesneeeseesnseeennnes 4
3. Omnwuc miaxoniB 1jst 00YUCIEHHS N-T0 YUCTA DIOOHATUI ..oovvvenereiieriieiieiiesiieeaieen 5
3.1. IrepaTUBHUI METOM (KITACHUHMI)......eeervreeererreeerireeesireeeeereeeeereesesseeesssnseesnnns 5
3.2. IrepaTuBHUIN MBUIKUI (MATPUUHHUIN) METOM . .cceurrreenereeeenereeenereesaneneeennneennnns 5
3.3. PexypCUBHHI METOM (KITACHUHUM)eeerevrreeereeeeiereeesereeesieseeeenreessssneessssseesnnns 5
3.4, PexypCUBHHI MBUIKUN (MATPUUHUM) METOI «eeeuvveeeenereeeenereeennereesnneneeennneennnns 5

4. TlopiBHSHHS MIBUAKOCTI 3pOCTAaHHS PI3HUX MOKA3HUKIB JIJISl PI3HUX METO/IB
MOIIYKY N-TO YUCHA DIOOHAUULvvveeeeeiiieeiiieeeiiee et e et eeireeeetveeeeeaeeeeeraeeesaneeeeneneas 6

4.1. KUIBKICTD OTIEPALIIMuvveeeeieiieeeiiieerieeeereeeeereeessreessssneeessseeeensseesssssessssssessnnns 6

4.2. Yac BukoHaHHs (IpUOIM3HO, HA OCHOBI KOHKPETHOT'O 3aITyCKY MPOTrpaMHu)... 7

4.3. BuxopucTanHs naM’sTi (TEOPETUYHO U MPUOTUBHO) ...eeeevrrreeereeernereeennnreeannn 8
4.4, T'nuOuHa pekypcii y CTeKy (TEOPETHIHO U MPUOTHIHO)......eeeeereeeeerreeenreeennsn, 9
T 1 (615 (0):) 4 SO SRR 10
5.1, MaTEMATHUHUM ACTICKT ..eeeeeuuvvreeeeeirieeeeeeirreeeesasnseeeessssseseessssseessssssssesesssnnnns 10
5.2. ANTOpUTMIYHUMN 1 TPAKTUYHUH ACTIEKTH «..eeuvveeureerireerieeenieeenieeeneeesseesseeenne 10
5.3, OOMEIKEHHST ...vveeuvreeneieesireesiteeeteesteestaeessseessseesnseesnseesseeesseensseessseessseesseeenns 10
J1omaToOK 1. ITPOTPAMHUI KO ...ceeuuvvrieeeeniiiieeeeniiieeeeeeiireeeesssteeeessnnsseeeesenssneeessnsnseeens 11
Jlomarok 2. Tabmums arcenr @100HATYL IO 93ovviiiiiieeieeieeee e 21

1. IlopiBHSAAHHSA peaJii3aliid MiTHECEHHS 10 CTENEHS

BignosigHo 1o 3aBnanHs, Oyji0 peaaizoBaHo ABa BapiaHTH (AB1 QyHKIIIT) arOpuTMy
IIBUJIKOTO ITiTHECEHHS 0 CTCTICHSI.

power

powerRecursive

«3HH3Y ToTOpU»: Oy1Iye

«3ropu 10HU3Y»: po30UBa€E

Hinxin pe3ynbTart, 00poosIoun 01TH :
BEJIMKY ITPOOJIEMy Ha MEHIII
OJIVH 3a OIHUM
O(log n) (uepes crex
O(1) (koHcTaHTHA): (log n) (P
Buxopucranus BUKJIMKIB): KOXKEH
o BUKOPHCTOBYE JIUIIIE .
nam'sri : N . . PEKyPCUBHUI BUKIIMK J10/1a€
(1kcoBaHUI HAO1p 3MIHHUX
KaJlp y CTEK
3a3BUuail MBUAIIA, OCKIIBKU Tpoxu noBUIBHIIIA Yepe3
IIponyKTuBHiCTH LUKJI €(DEeKTUBHIIIUHI 32 HaKJIaJ{Hl BUTPATH HA BUKJIUK
PEKYpPCHBHI BUKIIUKU byHKIII
. binbur iHTYyiTUBHA Ta OJMXK4Ya
. Mosxe OyTH CKJIaHIIIO JJIs
YuradeabHICTH 10 MaTeMaTU4YHOTO

PO3yMIHHSA

dbopMytoBaHHS

o @ynxyisa fibonaccilterativeQuick y mporpamMmi BUKOPUCTOBYE power
o @ynxyisa fibonacciRecQuick y mporpami BUKOPUCTOBY€E powerRecursive

Baosicnuee ymounenns neped nouamkom pooomu: sUKOPUCMOBYEMO P10 HUcel
Dibonauui, nouunarowu 3 wyna: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ...

2./loBeIeHHSI BEKTOPHO-MATPUYHOIO YABJICHHS

Yucsa PiGoHaudi MOKHA OOUHCIIUTH, CKOPHCTABIIHCH BEKTOPHO-
MAaTPHYHUM YABJIEHHAM

K 1 1Y E

"= “ns2
)1 ol&,
3BiJIKM BUILTHBAE, 1[0
EY (1 1YY(K

) o) |F

(moBexiTn)

Hexait M = (1 (1)) ta V, = (Fli:)

[Totpi6bHO noBectH, mo V,= MO x Vi, V n>1, ne V; = ((1))
(n > 1, ocxineku axuo n = 1, mo Fo euznaverno)

JloBeeMO MeTO0M MAaTeMATHYHOI IHIYKIIii: 11abJoH yMOBH V.

basa inaykuii: n=1;

F
miBa yactuna (JI4): V; = (1) = (1) ;

Fo 0
npasa yactuna (IT4): M? x V| = ((1) (1)) x ((1)) = ((1)),
=114 V.

Inayxkuiiine npunymeHHsi: TPUILYCTUMO, 1110 411 n=k V, =M@ x V¥V n>1, To0T10
Vi=M&ED x Vi, vV k>1.

Inpykuiiinmii nepexin: goseaemo, mo n=k+1 V, =M@ x V,, ¥ n>1, To6TO

Vi = MK x Vi, V k>0.

Fri1)
Fp)’

3a peKypCUBHUM BU3HaueHHSM uncen ®ibonauui Fy. = Fy + Fyj, Tomi

. Fk+Fk—1 . 1XFk+1XFk_1 . 1 1 Fk . .
Vk*“(Fi)‘(1ka+0ka_1)‘(1 o)<Fk_1>‘Mx"k‘

JloBenenns: Vi, = (

Q (inOyKyitine npunyujenns,)

= Mx M xV, =MExV, .

Orke, Vi = MK x V,|, 110 1 € TBEPIKSHHSAM 1HIYKI[IHHOTO TIEPEXOY.

JloBeneno.

3.0nuc miaxoaiB AJg 00UYMCJICHHS N-T0 YHCJIA

diooHauui

3.1. ITteparuBHM MeTOI (KJIACHYHUI)

fibonaccilterative

Crxaagnicts: O(n) 3a yacoMm, O(1) 3a mam'sTTI0.

Hpunuun: nocmigoBHe obumcienus F(1), F(2), ... , F(n), mo 306epirae npa
nornepeH1 3HaYCHHS.

IlepeBaru: mpocTora, MiHIMAJIbHE BUKOPUCTAHHS TTaM'STi.

Henosiku: moBUTbHUN JUIS1 1y>KE BEJIMKHUX N.

3.2. ITeparuBHUH MBUIKHANA (MATPUYHHI) METOI

fibonaccilterativeQuick

Craagnicth: O(log n) 3a wacom, O(1) 3a mam'sTTIO.

IMpunuun: oOuucnenns M™! 3a gomomoror iteparMBHOI (YHKIHI IMIBUIKOTO
M1THECEHHS JI0 CTETICHS power.

IlepeBaru: nyxe MBUIKO, HE BUKOPUCTOBYE CTEK PEKYpCIi.

Henmouiku: cknagnima peamizaiis TOPIBHSIHO 3 KJIACHYHUM.

3.3. PexypcuBHuii MeToa (KJIACHYIHWI)

fibonacciRec

Craagnictn: O(2") 3a yacom, O(n) 3a mam'saTTiO (IIMOMHA peKypcii).

Hpunuun: npsime 3actocyBands Gopmynu F, = F,.; + F,..

IlepeBaru: HalnpOCTINI KO/, BIANOBIAA€ MATEMAaTUYHOMY BU3HAYEHHIO.
Henosiku: excnoHeHIliiHA CKIAMHICTh, BENWYE3HA KIJIbKICTh TMOBTOPHHX
00YHCIIeHb, IPAKTUYHO HE MPUIAATHUM MPUOIU3HO 3 n > 46 yepe3 0OMEKEHHS CTEKY
(B pasi mepenaui 10 GyHKIIIT OLTBIIMX 3HAYEHb BUHUKAE TIpobsieMa Stack Overflow).

3.4. PexypcuBHUN MIBUAKUNA (MATPUYIHUH) METO
fibonacciRecQuick

Craagnicts: O(log n) 3a wacom, O(log n) 3a mam'sTTio (IMOWHA pEKypCii).
HMpunuun: o6uncnenns M"™! 3a 1omoMororo pexypcMBHOT (YHKIT HIBHUIKOTO
MiHECEHHsI 10 CTeTeHs powerRecursive.

IlepeBaru: nyxe MIBUIKO, JEMOHCTPYE PEKYPCUBHUN MiJIXiA A0 aJTOPUTMY
O(log n).

Henoniku: BUKOPUCTOBYE CTEK, 110 MOKE OyTH OUTBII HEOE3MEUHO 3a 1ITepaTUBHUN
BapiaHT.

4. TlopiBHSIHHA IBUAKOCTI 3POCTAHHSA Pi3HUX
MOKA3HUKIB JJIl PI3HUX METOIB MOIIYKY N-I'0 YU CJIA
dDidooHau i

4.1. KiJbKicTh onepaiii

ITepaTuBHMHI .].HBHIIKI/IﬁU SBanﬁf{a IHBHHK-a

n O(n) iTepaTuBHUI PeKypcCin peKypcis

O(log n) O(2") O(log n)
0 0 0 1 0
1 0 0 1 0
2 1 1 3 2
5 4 4 15 4
10 9 5 177 5
20 19 6 21891 6
30 29 6 2692537 6
40 39 7 331160281 7

[MopiBHAHHSA WBUAKOCTI 3pOCTAaHHSA KiNIbKOCTI onepadin

ITepaTuBHWA O(n)

LWsnakun itepatueHui O(log n)
—e— PekypcuHnn O(2°n)
107+ Lenakuin pekypcusHnm O(log n)

105 L

103 L

KinbKicTb onepauin (nor wkana)

101 L

LHleuoxuii imepamuenuti i wWEUOKUL PEeKYPCUBHUL NIOXOO0U BUKOHYIOMb OOHAKOB)Y
KLIbKICMb MamemMamuyHux onepayitl Ha OiNbWUX 4Uciax, momy wo 6OHU poONsamb
O00HAKOBY KIIbKICMb MHOJMCEHb MAMpUyb 3a MIE€I0 camolo @Gopmynon ueuoKo2o
niOHecenHs1, Ky MU 00800UNU paHniule, d JYUILHUK) KOOI paxye came yi MHOMCEHHSL.

Piznuys mioe yumu pynxyisaimu nonseae 8 opeaizayii Kooy, CHONCUBAHHI NAM ‘sSmi
ma uaci 6ukoHanHs. Imepamusnuil eapianm egexmueniuiuii Ha npakmuyi, 60 He mMae
HAKJIAOHUX GUMpAm HA peKypcilo, Xoua 3a KiIbKICmio apu@memuyHux onepayii
nioxoou i0eHmuyHi, 5K OYJ10 3a)8aAHCEHO paHiuie.

4.2. Yac BUKOHAHHSA (IPUOJIU3HO, HA OCHOBI KOHKPETHOI'0

3aIVCKY NMPOrpaMu)

. HIBuaxkuu 3Bnyaiina HIBuaka
IteparuBumi, | . N . A
n < iTepaTuBHMIA, peKypcis, pexypcis,
H us us s
0 0,1 0,3 0,1 0,1
1 0,1 0,2 0 0
2 0,2 0,4 0,1 0,2
5 0,1 0,5 0,2 0,4
10 0,1 0,5 0,8 0,4
20 0,2 0,5 57,7 0,4
30 0,2 0,5 7594,8 1,1
40 0,2 0,7 953603 0,9
[MopiBHAHHSA Yacy BUKOHAHHA QyHKUiN PiboHayvi
- 108t ITepaTusHUin O(n)
E Wenakui itepatueHuin O(log n)
E 105k —e— PeKypcuBHUiA O(27n)
_ Wenakun pekypcrneHui O(log n)
o
; 10%F
T
% 103 ¢
3
g- 102 |
=
% 101 |
T
o
g 100 B
g 10—1 ._T
0 35 40
n

Cnocmepiecaemo «8uOYxX08y» 0it0 36UYALIHO20 PEKYPCUBHO20 NiOX0O0Y.

4.3. Bukopucranas nam’ati (TeopeTH4Ho i NpuoOJINU3HO)

| . I BuaKuHii 3Buyaiina HIBuaka
n TEPATHBHITH, iTepaTUBHMIA, pexypcisi, pexypcis,
OaiiT .
Ganr OaiiT OaiT
0 12 48 0 0
1 12 48 12 48
2 12 48 24 96
5 12 48 60 144
10 12 48 120 192
20 12 48 240 240
30 12 48 360 240
40 12 48 480 288
MopiBHAHHS BUKOPUCTAHHA nam'aTi dyHKUiamn QiboHayvyi
200 ITepaTuBHMIA O(1)
WBunaknn iTepaTnuBHun O(1)
—e— PekypcuBHUiA O(n)
400 LWBnakmin pekypcueHuia O(log n)
E 300}
S
=
= 2001
c
100
O n
0 5 10 15 20 25 30 35 40
n

Imepamueni ynkyii euxkopucmosyroms cmany KilbKicmv Oaumie nam sami, a
PeKypcii 3011buyoms BUKOPUCTNAHHS NAM SIMI 6HACTIOOK NOCMITIHO20 BUKIUKY.

4.4. I'mnOnHa pexkypcii vV cTeKy (TeopeTHYHo i nNpuoJIN3HO)

3Buuaiina pexypcis, | LlIBuaka pexypcis,

n KUIBKICTh PIBHIB KUTBKICTh P1BHIB

BUKJIUKY (KaJIpiB) BUKJIUKY (KaJIpiB)
0 0 0
1 1 1
2 2 2
5 5 3
10 10 4
20 20 5
30 30 5
40 40 6

MopiBHAHHA FNINBUHKM pekypcil dyHKLUin PiboHaYYi

3BUYalHa peKypcis
WBnaka pekypcia

N W W -
ul o (] o
T T T T

= =
o w
T T

FnnbuHa pekypcii (stack depth)
N
o

o o
T

0 5 10 15 20 25 30 35 40

3suuatina pexypcis cymmeso wsuouie i Oiibuie no2nubnoe 36epHetHs 00 CMeKy nio
yac pobomu, momy mModxce weuoule npugecmu npozpamy 0o «mouxkuy Stack Overflow.

5. BucHoBku

5.1. MarteMaTHYHUN ACHEKT

JHoBeneHo, o unciaa PiboHaydi MoKHA 00UMCITIOBATH Yepe3 MiTHECEHHs] MaTpHIll
1o cremeHs. lle mo3Boisie 3acTOCYBAaTH alTOPUTM IIBHIKOTO 3BEICHHS Y CTEIiHb
(binary exponentiation) 1 3HU3UTH YacoBy ckiamHicTh 3 O(n) g0 O(log n). Takox
BaXXIUBO, 1110 O(log(n))-aIropuTMH BUKOPUCTOBYIOTh HabaraTo MEHIIE IaM'saTi CTEKY,
HIX O(n)-aNropuT™MHu.

5.2. AJIropuTMidYHHUM i TPAKTHYHUHA ACHEKTH

PeanizoBaHo Ta mpoTeCTOBAaHO YOTUPU METOAM OOUMCcIeHHs uncen Pi6oHauyl, 110
JEMOHCTPYIOTh P13HI ACUMIITOTUYHI CKIaJHOCTI:

1)
2)

3)
4)

NPOCTHUH ITePATUBHUI — ONTUMAJIBHUN JJIS1 MaJIUX N;

IIBUIKHUI iTepaTUBHUIT (MATPUYHUIT) — HalKpamuid BUOIp /Uit OyIb-SKUX N
3aBAsKH MBUAKOCTI Ta O(1) cKIIagHOCTI 3a TaM'SITTIO;

NPOCTHI PeKYPCUBHMI — HE €(DEKTUBHHUIA, Kpallle YHUKATH;

IIBUIKHI PeKYPCUBHUH (MATPHUYHMIA) — JIEMOHCTPY€E PEKYPCUBHHUM M1AXI1T
IIBHJIKOTO METO/Y, BUKOPHUCTOBYIOUH CTEK.

5.3. OoMexxeHHS

3a yMOBOI0 1a00paTopHOi pOOOTH TOCHIIKYBaIU (QYHKIII caMe Ha THIII int.

struct Matrix2x2

{

int 11, 12, 21, 292;
b
struct Vector2

{

int_1, 2;

I3

Makcumanbshe unciio @idoHauul, sike MOKe BMICTUTUCS y TuIl int (32 Oith), —
e Fys=1 836 311 903, ockinbku miana3oH signed int — Big -2 147 483 648 no
2 147 483 647, a HactynHui eneMeHT psaay Pidonaqui Fy; =2 971 215 073, mo
BKe OUTBIIIE 32 Jiana3oH MOXJIMBUX 3HAUYCHb THUITY int.

st obumcnenns F, B pasi n > 46 morpiOHE BUKOPUCTAHHS THIIB O1IBIIOL
MmicTkocTl (long long, unsigned long long — 64 6imu, 015 yux munie Makcumym
Fo; ma Foy3 6i0no6iono), a niis 30BCIM BEIMKHX 4ucell — O01010TEK JTOBUIBHOL
TOYHOCTI, Hampuknan Biglnteger. Ilpote 3arasoM mig 4yac BHUKOHAHHS ITi€l
naboparopHoi poOOTHM HABITH HAa THUINl int HAM YAAJIOCAd JOCUTH JETajbHO
JOCHIIUTA BIAMIHHOCTI B €(PEKTUBHOCTI Pi3HMX (yHKILIN OOYMCIEHHS N-TO
yucia OiboHauyi.

10

Honarox 1. Ilporpamumnii kox

#include <iostream>
#include "fibonacci.h"

using namespace std;

// Fibonacci range: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...

int main()
{
test();
cout << "\n\nProgram completed." << endl;

return 0;

#pragma once

struct Matrix2x2 {
mt 11, 12, 21, 22;
¥

struct Vector2 {
int 1, 2;

¥

int fibonaccilterative(int n, int& count);
int fibonaccilterativeQuick(int n, int& count);
int fibonacciRec(int n, int& count);

int fibonacciRecQuick(int n, int& count);

void test();

11

#include <iostream>

#include <cassert>

#include <iomanip>

#include <chrono> // in order to check time

#include <windows.h>

#include <psapi.h>// in order to check memory usage

#include "fibonacci.h"

using namespace std;

using namespace std::chrono;

static size t getCurrentMemoryUsage() {
PROCESS MEMORY_ COUNTERS info;
if (GetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info))) {

return info. WorkingSetSize;

return O;

// Matrix-vector multiplication
static Vector2 multiply(const Matrix2x2& M, const Vector2& v, int& count) {
count++; // counting the multiplying operations
Vector2 result{};
result. 1=M. 11 *v. 1+M. 12 *v. 2;
result. 2=M. 21 *v. 1 + M. 22 *v. 2;

return result;

// Matrix-matrix multiplication

static Matrix2x2 multiply(const Matrix2x2& A, const Matrix2x2& B) {

12

Matrix2x2 result{};

result. 11=A. 11 *B. 11 +A. 12 *B. 21;
result. 12=A. 11 *B. 12+ A. 12 * B. 22;
result. 21 =A. 21 *B. 11 +A. 22 *B. 21,
result. 22=A. 21 *B. 12+A. 22 * B, 22;

return result;

// Tterative matrix power
static Matrix2x2 power(const Matrix2x2& M, int n, int& count) {
if(n==0)return { 1,0,0, 1 };
if (n==1) return M;
Matrix2x2 result={ 1,0, 0, 1 };
Matrix2x2 base = M;
while (n > 0) {
count++;
if (n % 2 == 1) result = multiply(result, base);
base = multiply(base, base);
n/=2;
}

return result;

/I Recursive matrix power
static Matrix2x2 powerRec(const Matrix2x2& M, int n, int& count) {
count++;
if(n==0)return { 1,0,0, 1 };
if (n == 1) return M;
Matrix2x2 half = powerRec(M, n / 2, count);
Matrix2x2 halfSquared = multiply(half, half);
if(n%2==0) {

13

return halfSquared;
h
else {

return multiply(M, halfSquared);

int fibonaccilterative(int n, int& count) {
assert(n >= 0 && "n must be non-negative");
if (n <= 1) return n;
int prev = 0, current = 1;
for (inti=2; 1 <=n;it++) {
count++;
int next = prev + current;
prev = current;
current = next;

}

return current;

int fibonaccilterativeQuick(int n, int& count) {
assert(n >= 0 && "n must be non-negative");

if (n <= 1) return n; // optimization

Matrix2x2 M= {1,1,1,0 };

Vector2 v=1{1,01};

Matrix2x2 Mn = power(M, n - 1, count);
Vector2 result = multiply(Mn, v, count);

return result. 1;

14

int fibonacciRec(int n, int& count) {
count++;
assert(n >= 0 && "n must be non-negative");
if (n <= 1) return n;

return fibonacciRec(n - 1, count) + fibonacciRec(n - 2, count)

int fibonacciRecQuick(int n, int& count) {
assert(n >= 0 && "n must be non-negative");

if (n <= 1) return n; // optimization

Matrix2x2 M= {1,1,1,0 };

Vector2 v=1{1,0};

Matrix2x2 Mn = powerRec(M, n - 1, count);
Vector2 result = multiply(Mn, v, count);

return result. 1;

void test() {

Matrix2x2 M= { 1,1, 1,0 };

/I checking iterative and recursive power implementations
for (int n =0; n <= 10; n++) {
int counterl = 0, counter2 = 0;
Matrix2x2 iterative = power(M, n, counterl);
Matrix2x2 recursive = powerRec(M, n, counter2);
assert(iterative. 11 == recursive. 11);
assert(iterative. 12 == recursive. 12);
assert(iterative. 21 ==recursive. 21);

assert(iterative. 22 == recursive. 22);

5

15

endl;

int testCases[] = { 0, 1, 2, 5, 10, 20, 30, 40 };
int expected[] = {0, 1, 1, 5, 55, 6765, 832040, 102334155 };

int numTests = sizeof(testCases) / sizeof(testCases[0]);

// structure for storing results
struct TestResult {
int n;
int exp;
int operations[4];
double times[4];
int memory[4];
int stackDepth[4];
int results[4];
¥
TestResult allResults[8]{};

for (int 1 = 0; 1 < numTests; i++) {

if (i 1= 0) cout << "n

n <<

int n = testCases|[i];
int exp = expected][i];
allResults[i].n = n;

allResults[i].exp = exp;

cout << '"n =" <<n <<" (Expected Fibonacci number

intcl =0;
auto start]l = high resolution_clock::now();
int r1 = fibonaccilterative(n, cl);

auto end1 = high _resolution_clock::now();

D" <<exp << ")\n" << end];

16

double timel = duration<double, micro>(end1 - startl).count();

int c2 =0;

auto start2 = high resolution_clock::now();
int 12 = fibonaccilterativeQuick(n, c2);
auto end2 = high resolution clock::now();

double time2 = duration<double, micro>(end2 - start2).count();

int c3 =0;

auto start3 = high resolution_clock::now();
int r3 = fibonacciRec(n, c3);

auto end3 = high resolution clock::now();

double time3 = duration<double, micro>(end3 - start3).count();

int ¢4 = 0;

auto start4 = high_resolution_clock::now();
int r4 = fibonacciRecQuick(n, c4);

auto end4 = high_resolution_clock::now();

double time4 = duration<double, micro>(end4 - start4).count();

// storing results

allResults[1].operations[0] = c1;
allResults[1].operations[1] = ¢2;
allResults[1].operations[2] = ¢3;

allResults[1].operations[3] = c4;

allResults[1].times[0] = time1;
allResults[1].times[1] = time2;
allResults[1].times[2] = time3;

allResults[1].times[3] = time4;

17

allResults[1].results[0] =r1;
allResults[i].results[1] =12;
allResults[i].results[2] = 13;

allResults[i].results[3] = r4;

cout << "Results" << endl;

cout << " Iterative: " <<rl <<endl,
cout <<" Quick iterative: " << 12 << endl;
cout << " Recursive: " <<r3 <<endl

cout <<" Quick recursive: " <<r4 << endl;

// all results must match expected Fibonacci numbers
assert(rl == exp);
assert(r2 == exp);
assert(r3 == exp);

assert(r4 == exp);

cout << "\nTime Complexity" << endl;

cout <<" Iterative (O(n)): " <<cl << " operations, "
<< timel <<" microseconds" << endl;

cout <<" Quick iterative (O(log n)): " <<c2 <<" operations, "
<< time2 << " microseconds" << endl;

cout <<" Recursive (O(2"n)): " << c3 << " operations, "
<< time3 << " microseconds" << endl;

cout <<" Quick recursive (O(log n)): " <<c4 <<" operations, "

<< time4 << " microseconds" << endl;

// theoretical memory usage estimation
int stackDepthRec = n;

int stackDepthRecQuick = (int)ceil(log2(n + 1)); // "divide and conquer"

18

v, result

halfSquared

int memlterative = 3 * sizeof(int); // prev, current, next

int memlterativeQuick = sizeof(Matrix2x2) * 2 + sizeof(Vector2) * 2; // result, base;

int memRecursive = stackDepthRec * (sizeof(int) * 3); // n, count, return

int memRecQuick = stackDepthRecQuick * (sizeof(Matrix2x2) * 3); // M, half,

allResults[i].memory[0] = memlterative;
allResults[i].memory[1] = memlterativeQuick;
allResults[i].memory[2] = memRecursive;

allResults[i].memory[3] = memRecQuick;

allResults[i].stackDepth[0] = 1;
allResults[i].stackDepth[1] = 1;
allResults[1i].stackDepth[2] = stackDepthRec;
allResults[1i].stackDepth[3] = stackDepthRecQuick;

cout << "\nSpace Complexity (theoretical)" << endl;

cout <<" Iterative (O(1)): " << memlterative << " bytes" << endl;
cout <<" Quick iterative (O(1)): " << memlterativeQuick << " bytes" << endl
cout <<" Recursive (O(n)): " << memRecursive

<< " bytes (stack depth: " << stackDepthRec <<")" << endl;
cout <<" Quick recursive (O(log n)): " << memRecQuick

<< " bytes (stack depth: " << stackDepthRecQuick << ")" << end];

// ASSERT-BASED COMPARISON

/1 (if quick functions perform worse than expected, this will trigger an assertion)

double tolerance = 2.0;

for (int 1 = 0; 1 < numTests; i++) {

3

19

int n = allResults[1].n;

// The quick iterative implementation should not require
// significantly more operations than the simple iterative one
if (n > 10) { // checking only for larger n where differences are more noticeable

assert(allResults[i].operations[1] <= allResults[i].operations[0] * tolerance)

// The quick recursive implementation should not require
// significantly more operations than the simple recursive one
if (n > 10) { // checking only for larger n where differences are more noticeable

assert(allResults[i].operations[3] <= allResults[i].operations[2] * tolerance)

9

9

20

Honarok 2. Tadauusa yucea ®ioonaq4i 10 93

20

21

22

23

24

25

26

27

28

29

30

31

a8

46

75

121

156

217

514

Eaa

1 246

Fic = 1 836311 9303 — mzmounyma qna int (32 Gima, oo 2 147 483 6847)

13

21

34

53

a5

144

233

277

610

557

534

131

TES

S4€

711

837

263

025

253

214

BE11

Tabnuuya uncen Pibonauui F; - Fss

33 2 524 578
34 5 70z 837
15 T 237 465
% 14 530 252
37 24 157 817
B 20 03E 180
19 €2 245 %36
40 102 234 155
4 165 530 141
&2 267 514 286
43 433 404 437
a4 701 408 733
45 1 134 203 170
a5 1 836 211 502
a7 2 571 215 072
a8 4 807 536 976
a9 7 T7E 742 040
50 11 536 260 015
51 20 265 011 074
52 27 551 230 080
53 52 316 291 172
54 86 267 571 272
55 120 532 862 445
56 235 B51 433 717
57 265 235 206 162
58 531 286 728 7%
59 $5§ 722 0326 041
50 1 548 00F 755 820
5l 2 504 730 791 S6L
62 4 052 730 537 831

65

66

&7

68

63

T0

T

72

FE]

T4

75

76

T

T8

79

a0

2l

a2

a3

a5

86

a7

a3

a3

50

Ll

92

93

[[] Far+ —n=penoesszhus anaine

B

117

150

20E

458

806

204

111

418

7 8ag

205 7

0&7

045

113

160

610

(-]

352

0€L

738

T 7B

416

153

205

7 €430

T 850

450

5321

011

B 544

a77

€22

222

024

J4E

a2

73l

054

alse

511

727

7 6B

2EE

004

7o

as

751

€76

467

101

T1%

-BE]

330

246

876

288

as53

B 141

554

135

ias

263

& 253

B &57

E 050

5 &3

258

531

18g

120

ane

438

T3E

Loicepeno nobyoosu mabnuyi: hitps://claude.ai/public/artifacts/c891d233-a3c3-4¢99-b9be-0fea7f48d925

21

https://claude.ai/public/artifacts/c891d233-a3c3-4c99-b9be-0fea7f48d925

