
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

Національний університет «Києво-Могилянська академія»

Факультет інформатики

Лабораторна робота № 4

з Процедурного програмування (на базі Сі/Сі++)

Функції обчислення n-го числа Фібоначчі.

Програмування, дослідження та порівняння

Студентки 2 курсу, групи 1,

спеціальності 121 «Інженерія програмного забезпечення»

Асташенкової Катерини Олександрівни

Викладач:

доц. В. В. Бублик

м. Київ

2025

2

Зміст

1. Порівняння реалізацій піднесення до степеня .. 3

2. Доведення векторно-матричного уявлення .. 4

3. Опис підходів для обчислення n-го числа Фібоначчі 5

3.1. Ітеративний метод (класичний) .. 5

3.2. Ітеративний швидкий (матричний) метод ... 5

3.3. Рекурсивний метод (класичний) .. 5

3.4. Рекурсивний швидкий (матричний) метод ... 5

4. Порівняння швидкості зростання різних показників для різних методів

пошуку n-го числа Фібоначчі ... 6

4.1. Кількість операцій ... 6

4.2. Час виконання (приблизно, на основі конкретного запуску програми) ... 7

4.3. Використання пам’яті (теоретично й приблизно) 8

4.4. Глибина рекурсії у стеку (теоретично й приблизно) 9

5. Висновки ... 10

5.1. Математичний аспект .. 10

5.2. Алгоритмічний і практичний аспекти ... 10

5.3. Обмеження ... 10

Додаток 1. Програмний код .. 11

Додаток 2. Таблиця чисел Фібоначчі до 93 ... 21

3

1. Порівняння реалізацій піднесення до степеня

Відповідно до завдання, було реалізовано два варіанти (дві функції) алгоритму

швидкого піднесення до степеня.

 power powerRecursive

Підхід

«Знизу догори»: будує

результат, обробляючи біти

один за одним

«Згори донизу»: розбиває

велику проблему на менші

Використання

пам'яті

O(1) (константна):

використовує лише

фіксований набір змінних

O(log n) (через стек

викликів): кожен

рекурсивний виклик додає

кадр у стек

Продуктивність

Зазвичай швидша, оскільки

цикл ефективніший за

рекурсивні виклики

Трохи повільніша через

накладні витрати на виклик

функцій

Читабельність
Може бути складнішою для

розуміння

Більш інтуїтивна та ближча

до математичного

формулювання

o Функція fibonacciIterativeQuick у програмі використовує power

o Функція fibonacciRecQuick у програмі використовує powerRecursive

4

Важливе уточнення перед початком роботи: використовуємо ряд чисел

Фібоначчі, починаючи з нуля: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 ...

2. Доведення векторно-матричного уявлення

Нехай M = (
1 1
1 0

) та Vₙ = (
Fₙ

Fₙ₋₁
).

Потрібно довести, що Vₙ = M⁽ⁿ⁻¹⁾ × V₁, ∀ n≥1, де 𝑉1 = (
1
0

)

(n ≥ 1, оскільки якщо n = 1, то F₀ визначено)

Доведемо методом математичної індукції: шаблон умови ✓.

База індукції: n=1;

ліва частина (ЛЧ): V1 = (
F1
F0

) = (
1
0

) ;

права частина (ПЧ): M0 × V1 = (
1 0
0 1

) × (
1
0

) = (
1
0

);

ЛЧ = ПЧ ✓.

Індукційне припущення: припустимо, що для n=k Vₙ = M⁽ⁿ⁻¹⁾ × V₁, ∀ n≥1, тобто

Vk = M⁽k⁻¹⁾ × V₁, ∀ k≥1.

Індукційний перехід: доведемо, що n=k+1 Vₙ = M⁽ⁿ⁻¹⁾ × V₁, ∀ n≥1, тобто

Vk+1 = Mk × V₁, ∀ k≥0.

Доведення: Vk+1 = (
Fk+1

Fk
),

за рекурсивним визначенням чисел Фібоначчі Fk+1 = Fk + Fk-1, тоді

Vk+1 = (
Fk + Fk−1

Fk
) = (

1 × Fk + 1 × Fk−1

1 × Fk + 0 × Fk−1
) = (

1 1
1 0

) (
Fk

Fk−1
) = M × Vk =

⤸ (індукційне припущення)

= M × Mk−1 × V1 = Mk × V1 .

Отже, Vk+1 = Mk × V1, що і є твердженням індукційного переходу.

Доведено.

5

3. Опис підходів для обчислення n-го числа

Фібоначчі

3.1. Ітеративний метод (класичний)

fibonacciIterative

• Складність: O(n) за часом, O(1) за пам'яттю.

• Принцип: послідовне обчислення F(1), F(2), … , F(n), що зберігає два

попередні значення.

• Переваги: простота, мінімальне використання пам'яті.

• Недоліки: повільний для дуже великих n.

3.2. Ітеративний швидкий (матричний) метод

fibonacciIterativeQuick

• Складність: O(log n) за часом, O(1) за пам'яттю.

• Принцип: обчислення Mn-1 за допомогою ітеративної функції швидкого

піднесення до степеня power.

• Переваги: дуже швидко, не використовує стек рекурсії.

• Недоліки: складніша реалізація порівняно з класичним.

3.3. Рекурсивний метод (класичний)

fibonacciRec

• Складність: O(2n) за часом, O(n) за пам'яттю (глибина рекурсії).

• Принцип: пряме застосування формули Fn = Fn-1 + Fn-2.

• Переваги: найпростіший код, відповідає математичному визначенню.

• Недоліки: експоненційна складність, величезна кількість повторних

обчислень, практично не придатний приблизно з n > 46 через обмеження стеку

(в разі передачі до функції більших значень виникає проблема Stack Overflow).

3.4. Рекурсивний швидкий (матричний) метод

fibonacciRecQuick

• Складність: O(log n) за часом, O(log n) за пам'яттю (глибина рекурсії).

• Принцип: обчислення Mn-1 за допомогою рекурсивної функції швидкого

піднесення до степеня powerRecursive.

• Переваги: дуже швидко, демонструє рекурсивний підхід до алгоритму

O(log n).

• Недоліки: використовує стек, що може бути більш небезпечно за ітеративний

варіант.

6

4. Порівняння швидкості зростання різних

показників для різних методів пошуку n-го числа

Фібоначчі

4.1. Кількість операцій

n
Ітеративний

O(n)

Швидкий

ітеративний

O(log n)

Звичайна

рекурсія

O(2n)

Швидка

рекурсія

O(log n)

0 0 0 1 0

1 0 0 1 0

2 1 1 3 2

5 4 4 15 4

10 9 5 177 5

20 19 6 21891 6

30 29 6 2692537 6

40 39 7 331160281 7

Швидкий ітеративний і швидкий рекурсивний підходи виконують однакову

кількість математичних операцій на більших числах, тому що вони роблять

однакову кількість множень матриць за тією самою формулою швидкого

піднесення, яку ми доводили раніше, а лічильник у коді рахує саме ці множення.

7

Різниця між цими функціями полягає в організації коду, споживанні пам’яті

та часі виконання. Ітеративний варіант ефективніший на практиці, бо не має

накладних витрат на рекурсію, хоча за кількістю арифметичних операцій

підходи ідентичні, як було зауважено раніше.

4.2. Час виконання (приблизно, на основі конкретного

запуску програми)

n
Ітеративний,

μs

Швидкий

ітеративний,

μs

Звичайна

рекурсія,

μs

Швидка

рекурсія,

μs

0 0,1 0,3 0,1 0,1

1 0,1 0,2 0 0

2 0,2 0,4 0,1 0,2

5 0,1 0,5 0,2 0,4

10 0,1 0,5 0,8 0,4

20 0,2 0,5 57,7 0,4

30 0,2 0,5 7594,8 1,1

40 0,2 0,7 953603 0,9

Спостерігаємо «вибухову» дію звичайного рекурсивного підходу.

8

4.3. Використання пам’яті (теоретично й приблизно)

n
Ітеративний,

байт

Швидкий

ітеративний,

байт

Звичайна

рекурсія,

байт

Швидка

рекурсія,

байт

0 12 48 0 0

1 12 48 12 48

2 12 48 24 96

5 12 48 60 144

10 12 48 120 192

20 12 48 240 240

30 12 48 360 240

40 12 48 480 288

Ітеративні функції використовують сталу кількість байтів пам’яті, а

рекурсії збільшують використання пам’яті внаслідок постійного виклику.

9

4.4. Глибина рекурсії у стеку (теоретично й приблизно)

n

Звичайна рекурсія,

кількість рівнів

виклику (кадрів)

Швидка рекурсія,

кількість рівнів

виклику (кадрів)

0 0 0

1 1 1

2 2 2

5 5 3

10 10 4

20 20 5

30 30 5

40 40 6

Звичайна рекурсія суттєво швидше і більше поглиблює звернення до стеку під

час роботи, тому може швидше привести програму до «точки» Stack Overflow.

10

5. Висновки

5.1. Математичний аспект

Доведено, що числа Фібоначчі можна обчислювати через піднесення матриці

до степеня. Це дозволяє застосувати алгоритм швидкого зведення у степінь

(binary exponentiation) і знизити часову складність з O(n) до O(log n). Також

важливо, що O(log(n))-алгоритми використовують набагато менше пам'яті стеку,

ніж O(n)-алгоритми.

5.2. Алгоритмічний і практичний аспекти

Реалізовано та протестовано чотири методи обчислення чисел Фібоначчі, що

демонструють різні асимптотичні складності:

1) простий ітеративний — оптимальний для малих n;

2) швидкий ітеративний (матричний) — найкращий вибір для будь-яких n

завдяки швидкості та O(1) складності за пам'яттю;

3) простий рекурсивний — не ефективний, краще уникати;

4) швидкий рекурсивний (матричний) — демонструє рекурсивний підхід

швидкого методу, використовуючи стек.

5.3. Обмеження

o За умовою лабораторної роботи досліджували функції саме на типі int.

o Максимальне число Фібоначчі, яке може вміститися у тип int (32 біти), —

це F46 = 1 836 311 903, оскільки діапазон signed int — від -2 147 483 648 до

2 147 483 647, а наступний елемент ряду Фібоначчі F47 = 2 971 215 073, що

вже більше за діапазон можливих значень типу int.

o Для обчислення Fn в разі n > 46 потрібне використання типів більшої

місткості (long long, unsigned long long — 64 біти, для цих типів максимум

F92 та F93 відповідно), а для зовсім великих чисел — бібліотек довільної

точності, наприклад BigInteger. Проте загалом під час виконання цієї

лабораторної роботи навіть на типі int нам удалося досить детально

дослідити відмінності в ефективності різних функцій обчислення n-го

числа Фібоначчі.

11

Додаток 1. Програмний код

#include <iostream>

#include "fibonacci.h"

using namespace std;

// Fibonacci range: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144...

int main()

{

 test();

 cout << "\n\nProgram completed." << endl;

 return 0;

}

#pragma once

struct Matrix2x2 {

 int _11, _12, _21, _22;

};

struct Vector2 {

 int _1, _2;

};

int fibonacciIterative(int n, int& count);

int fibonacciIterativeQuick(int n, int& count);

int fibonacciRec(int n, int& count);

int fibonacciRecQuick(int n, int& count);

void test();

12

#include <iostream>

#include <cassert>

#include <iomanip>

#include <chrono> // in order to check time

#include <windows.h>

#include <psapi.h> // in order to check memory usage

#include "fibonacci.h"

using namespace std;

using namespace std::chrono;

static size_t getCurrentMemoryUsage() {

 PROCESS_MEMORY_COUNTERS info;

 if (GetProcessMemoryInfo(GetCurrentProcess(), &info, sizeof(info))) {

 return info.WorkingSetSize;

 }

 return 0;

}

// Matrix-vector multiplication

static Vector2 multiply(const Matrix2x2& M, const Vector2& v, int& count) {

 count++; // counting the multiplying operations

 Vector2 result{};

 result._1 = M._11 * v._1 + M._12 * v._2;

 result._2 = M._21 * v._1 + M._22 * v._2;

 return result;

}

// Matrix-matrix multiplication

static Matrix2x2 multiply(const Matrix2x2& A, const Matrix2x2& B) {

13

 Matrix2x2 result{};

 result._11 = A._11 * B._11 + A._12 * B._21;

 result._12 = A._11 * B._12 + A._12 * B._22;

 result._21 = A._21 * B._11 + A._22 * B._21;

 result._22 = A._21 * B._12 + A._22 * B._22;

 return result;

}

// Iterative matrix power

static Matrix2x2 power(const Matrix2x2& M, int n, int& count) {

 if (n == 0) return { 1, 0, 0, 1 };

 if (n == 1) return M;

 Matrix2x2 result = { 1, 0, 0, 1 };

 Matrix2x2 base = M;

 while (n > 0) {

 count++;

 if (n % 2 == 1) result = multiply(result, base);

 base = multiply(base, base);

 n /= 2;

 }

 return result;

}

// Recursive matrix power

static Matrix2x2 powerRec(const Matrix2x2& M, int n, int& count) {

 count++;

 if (n == 0) return { 1, 0, 0, 1 };

 if (n == 1) return M;

 Matrix2x2 half = powerRec(M, n / 2, count);

 Matrix2x2 halfSquared = multiply(half, half);

 if (n % 2 == 0) {

14

 return halfSquared;

 }

 else {

 return multiply(M, halfSquared);

 }

}

int fibonacciIterative(int n, int& count) {

 assert(n >= 0 && "n must be non-negative");

 if (n <= 1) return n;

 int prev = 0, current = 1;

 for (int i = 2; i <= n; i++) {

 count++;

 int next = prev + current;

 prev = current;

 current = next;

 }

 return current;

}

int fibonacciIterativeQuick(int n, int& count) {

 assert(n >= 0 && "n must be non-negative");

 if (n <= 1) return n; // optimization

 Matrix2x2 M = { 1, 1, 1, 0 };

 Vector2 v = { 1, 0 };

 Matrix2x2 Mn = power(M, n - 1, count);

 Vector2 result = multiply(Mn, v, count);

 return result._1;

}

15

int fibonacciRec(int n, int& count) {

 count++;

 assert(n >= 0 && "n must be non-negative");

 if (n <= 1) return n;

 return fibonacciRec(n - 1, count) + fibonacciRec(n - 2, count);

}

int fibonacciRecQuick(int n, int& count) {

 assert(n >= 0 && "n must be non-negative");

 if (n <= 1) return n; // optimization

 Matrix2x2 M = { 1, 1, 1, 0 };

 Vector2 v = { 1, 0 };

 Matrix2x2 Mn = powerRec(M, n - 1, count);

 Vector2 result = multiply(Mn, v, count);

 return result._1;

}

void test() {

 Matrix2x2 M = { 1, 1, 1, 0 };

 // checking iterative and recursive power implementations

 for (int n = 0; n <= 10; n++) {

 int counter1 = 0, counter2 = 0;

 Matrix2x2 iterative = power(M, n, counter1);

 Matrix2x2 recursive = powerRec(M, n, counter2);

 assert(iterative._11 == recursive._11);

 assert(iterative._12 == recursive._12);

 assert(iterative._21 == recursive._21);

 assert(iterative._22 == recursive._22);

 }

16

 int testCases[] = { 0, 1, 2, 5, 10, 20, 30, 40 };

 int expected[] = { 0, 1, 1, 5, 55, 6765, 832040, 102334155 };

 int numTests = sizeof(testCases) / sizeof(testCases[0]);

 // structure for storing results

 struct TestResult {

 int n;

 int exp;

 int operations[4];

 double times[4];

 int memory[4];

 int stackDepth[4];

 int results[4];

 };

 TestResult allResults[8]{};

 for (int i = 0; i < numTests; i++) {

 if (i != 0) cout << "\n___" <<

endl;

 int n = testCases[i];

 int exp = expected[i];

 allResults[i].n = n;

 allResults[i].exp = exp;

 cout << "n = " << n << " (Expected Fibonacci number: " << exp << ")\n" << endl;

 int c1 = 0;

 auto start1 = high_resolution_clock::now();

 int r1 = fibonacciIterative(n, c1);

 auto end1 = high_resolution_clock::now();

17

 double time1 = duration<double, micro>(end1 - start1).count();

 int c2 = 0;

 auto start2 = high_resolution_clock::now();

 int r2 = fibonacciIterativeQuick(n, c2);

 auto end2 = high_resolution_clock::now();

 double time2 = duration<double, micro>(end2 - start2).count();

 int c3 = 0;

 auto start3 = high_resolution_clock::now();

 int r3 = fibonacciRec(n, c3);

 auto end3 = high_resolution_clock::now();

 double time3 = duration<double, micro>(end3 - start3).count();

 int c4 = 0;

 auto start4 = high_resolution_clock::now();

 int r4 = fibonacciRecQuick(n, c4);

 auto end4 = high_resolution_clock::now();

 double time4 = duration<double, micro>(end4 - start4).count();

 // storing results

 allResults[i].operations[0] = c1;

 allResults[i].operations[1] = c2;

 allResults[i].operations[2] = c3;

 allResults[i].operations[3] = c4;

 allResults[i].times[0] = time1;

 allResults[i].times[1] = time2;

 allResults[i].times[2] = time3;

 allResults[i].times[3] = time4;

18

 allResults[i].results[0] = r1;

 allResults[i].results[1] = r2;

 allResults[i].results[2] = r3;

 allResults[i].results[3] = r4;

 cout << "Results" << endl;

 cout << " Iterative: " << r1 << endl;

 cout << " Quick iterative: " << r2 << endl;

 cout << " Recursive: " << r3 << endl;

 cout << " Quick recursive: " << r4 << endl;

 // all results must match expected Fibonacci numbers

 assert(r1 == exp);

 assert(r2 == exp);

 assert(r3 == exp);

 assert(r4 == exp);

 cout << "\nTime Complexity" << endl;

 cout << " Iterative (O(n)): " << c1 << " operations, "

 << time1 << " microseconds" << endl;

 cout << " Quick iterative (O(log n)): " << c2 << " operations, "

 << time2 << " microseconds" << endl;

 cout << " Recursive (O(2^n)): " << c3 << " operations, "

 << time3 << " microseconds" << endl;

 cout << " Quick recursive (O(log n)): " << c4 << " operations, "

 << time4 << " microseconds" << endl;

 // theoretical memory usage estimation

 int stackDepthRec = n;

 int stackDepthRecQuick = (int)ceil(log2(n + 1)); // "divide and conquer"

19

 int memIterative = 3 * sizeof(int); // prev, current, next

 int memIterativeQuick = sizeof(Matrix2x2) * 2 + sizeof(Vector2) * 2; // result, base;

v, result

 int memRecursive = stackDepthRec * (sizeof(int) * 3); // n, count, return

 int memRecQuick = stackDepthRecQuick * (sizeof(Matrix2x2) * 3); // M, half,

halfSquared

 allResults[i].memory[0] = memIterative;

 allResults[i].memory[1] = memIterativeQuick;

 allResults[i].memory[2] = memRecursive;

 allResults[i].memory[3] = memRecQuick;

 allResults[i].stackDepth[0] = 1;

 allResults[i].stackDepth[1] = 1;

 allResults[i].stackDepth[2] = stackDepthRec;

 allResults[i].stackDepth[3] = stackDepthRecQuick;

 cout << "\nSpace Complexity (theoretical)" << endl;

 cout << " Iterative (O(1)): " << memIterative << " bytes" << endl;

 cout << " Quick iterative (O(1)): " << memIterativeQuick << " bytes" << endl;

 cout << " Recursive (O(n)): " << memRecursive

 << " bytes (stack depth: " << stackDepthRec << ")" << endl;

 cout << " Quick recursive (O(log n)): " << memRecQuick

 << " bytes (stack depth: " << stackDepthRecQuick << ")" << endl;

 }

 // ASSERT-BASED COMPARISON

 // (if quick functions perform worse than expected, this will trigger an assertion)

 double tolerance = 2.0;

 for (int i = 0; i < numTests; i++) {

20

 int n = allResults[i].n;

 // The quick iterative implementation should not require

 // significantly more operations than the simple iterative one

 if (n > 10) { // checking only for larger n where differences are more noticeable

 assert(allResults[i].operations[1] <= allResults[i].operations[0] * tolerance);

 }

 // The quick recursive implementation should not require

 // significantly more operations than the simple recursive one

 if (n > 10) { // checking only for larger n where differences are more noticeable

 assert(allResults[i].operations[3] <= allResults[i].operations[2] * tolerance);

 }

 }

}

21

Додаток 2. Таблиця чисел Фібоначчі до 93

Джерело побудови таблиці: https://claude.ai/public/artifacts/c891d233-a3c3-4c99-b9be-0fea7f48d925

https://claude.ai/public/artifacts/c891d233-a3c3-4c99-b9be-0fea7f48d925

